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Infinitesimal deformation approach of the 
phenomenological crystallographic theory of 
martensitic transformations 
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The infinitesimal-deformation approach has been used to reformulate the phenomenological 
crystallographic theory of martensitic transformations. Simple analytical solutions for the habit 
plane orientation, the direction and magnitude of the lattice invariant shear, the orientation 
relationship between parent and product phases, etc. were derived for the cubic to tetragonal 
transformation. The derived results were numerically compared with those obtained from the 
original phenomenological theory by taking the cubic to tetragonal transformation in a zirconia 
alloy as an example. The expected magnitude of the differences in solutions between the pre- 
sent and phenomenological crystallographic analyses was also discussed. 

1. I n t r o d u c t i o n  
The so-called phenomenological crystallographic 
theory of martensitic transformations, originally 
developed by Wechsler et al. [1] and by Bowles and 
Mackenzie [2], has been applied successfully to the 
discussion of the crystallography and morphology of 
various martensites and precipitates embedded in a 
parent phase. This theory is based on the invariant 
plane strain (IPS) criterion at the planar interface 
between parent and product phases. From a knowledge 
of the lattice deformation and lattice invariant defor- 
mation systems which operate during a transform- 
ation, such solutions as the habit plane orientation, 
the total shape deformation of the product phase and 
the orientation relationship between the parent and 
product phases can be obtained so as to satisfy the IPS 
condition. 

Since the phenomenological theory employs the 
finite-deformation (FD) approach, however, numeri- 
cal calculation on a computer is practically unavoid- 
able to obtain solutions. Although such solutions as 
habit plane orientation and the amount of lattice 
invariant deformation can be written analytically 
when the phenomenological theory is applied to 
simple transformation systems, the solution for orien- 
tation relationship, for example, is very difficult 
to express analytically. The lack of analytical sol- 
utions often prevents us from finding and predicting 
the systematic dependence of solutions on input 
parameters. 

Several researches [3-7] have shown, using the 
infinitesimal deformation (ID) approach, that when a 
product phase embedded in a parent phase has a 
planar interface between the two phases (called the 
"habit plane") and when the total transformation 
strain components in the plane of the interface are 
zero, the elastic strain energy associated with the 

transformation completely vanishes. Neglecting the 
interfacial energy, this condition is of course most 
favourable for the coexistence of the two phases. With 
the above physical background in mind, the previous 
investigators have derived the habit plane orientation 
and the magnitude of the lattice invariant deformation 
to satisfy the condition of the vanishing elastic strain 
energy. 

Such a theory based on the ID approach is an 
approximation of the FD-based phenomenological 
crystallographic theory. The advantage of the ID- 
based theory is that all solutions can be expressed in 
simple and analytical forms. Therefore, numerical cal- 
culation on a computer is not needed. However, it 
must be admitted that the ID-based crystallographic 
theory so far formulated is still incomplete. For exam- 
ple, the theory lacks the solution for the orientation 
relationship between parent and product phases. This 
is probably because of the fact that the ID analysis 
usually employs symmetric strain tensors and discards 
the irrelevant rotation components of a deformation. 
However, the rotation component are in fact essential 
in describing the orientation relationships. 

Therefore, in the present study, asymmetric distor- 
tion tensors, instead of symmetric strain tensors, will 
be employed in the ID analysis to completely for- 
mulate the phenomenological theory based on the ID 
theory. Moreover, the present analysis will also be 
applied to the cubic to tetragonal transformation in a 
zirconia alloy to discuss its implication and practical 
applicability. 

2. Fundamental procedure for the 
analysis 

Given a lattice correspondence between a parent 
phase (hereafter referred to~as ~ phase) and a product 
phase (fl phase) and the lattice parameters of the two 
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phases, the distortion matrix to describe the lattice 
deformation B can be obtained. Appendix 1 shows the 
definition of the distortion components and matrices 
in the present study. With a proper orthonormal coor- 
dinate system, x~-x~-x~, fixed to the c~ phase (the c~ 
system), B is most generally expressed as 

/ Bu Bu BI3 ~ 

B" = [B21 922 B23 J (1) 

\B3~ B32 B33J~ 

The index a denotes the ~ coordinate system. Khacha- 
turyan and Shatalov [3] and Mura et al. [4] have 
shown that if the components of a symmetric transform- 
ation strain tensor, say F(S), satisfy 

F~,(S) = f~2(S) = F~2(S) = 0 (2) 

on a particular orthonormal x~-x~-x~ coordinate 
system (the n system, see Appendix 2), then the elastic 
strain energy associated with the formation of the 
plate-shaped fl phase (embedded in the cr phase) 
becomes zero when the x~ axis becomes perpendicular 
to the habit plane. In fact, Equation 2 constitutes the 
necessary condition for the IPS deformation, as will be 
discussed later. 

In general, however, the symmetric strain com- 
ponents of B in Equation 1, B(S), do not satisfy the 
condition (Equation 2) for any choice of the n system. 
Therefore, an additional deformation (the lattice 
invariant deformation) must be introduced in the fl 
phase. For  the lattice invariant deformation system, a 
simple shear, either by slip or by twinning, on a par- 
ticular plane along a particular direction is taken so as 
to meet the experimental observation. 

Let the distortion tensor as a result of the combi- 
nation of the lattice deformation and the lattice 
invariant shear (LIS) deformation be described as F. 
Then, in order for the elastic strain energy to vanish, 
Equation 2 must be satisfied on a new n coordinate 
system. It should be noted that we have three unknown 
parameters to be solved; two angles to describe the 
direction of the habit plane normal, ~ ,  on the c~ 
coordinate system, and the amount of the LIS defor- 
mation. Since Equation 2 gives three simultaneous 
equations, the three unknown parameters and, thus, 
all the components of F can be obtained in principle. 

Although the above derivation procedure assures 
that the habit plane is undistorted, it does not necess- 
arily mean that the habit plane is unrotated. In other 
words, Equation 2 is only the necessary (but not suf- 
ficient) condition for the IPS deformation. This is 
because only the symmetric strain components of F, 
F(S), has been dealt with in Equation 2. In order to 
make the habit plane invariant (undistorted and 
unrotated), let us introduce an antisymmetric rotation 
matrix R on the e system. According to Appendix 1, 
R can be written as 

R ~ = 0)3 0 - t 

- -  ( ,0  2 O )  1 

where oj(i = 1, 2, 3) are unknown angles of rotation. 

(3) 

The total shape distortion T ~ on the e system is 
written as 

T ~ = r ~ + R ~ (4) 

In order for the habit plane to be invariant, any two 
non-parallel vectors, say v(I) and v(II), on the habit 
plane should remain unchanged before and after the 
transformation. In the present ID analysis, this con- 
dition can he written as 

T~v~(i) = 0, i = I a n d I I  (5a) 

o r  

TI~ TI2 TI31 Ivl(/)l 
T2, T,3]lv,(i)[ = 0, i =  I a n d l I  

| |  / 
r~= n3/Lv3(0L 

(5b) 

Since F ~ is already known, the above equation deter- 
mines all the components of RL Then, the orientation 
relationship is determined from the matrix R. In the 
following, the above general analysis will be applied to 
the cubic to tetragonal transformation. 

3. C u b i c  t o  t e t r a g o n a l  t r a n s f o r m a t i o n  
Many systems belong to this type of transformation 
such as f cc  to bcc  (bct) and fcc  to f c t  martensitic 
transformations in metals and alloys, cubic to tet- 
ragonal transformation in zirconia, etc. The original 
phenomenological theories [1, 2] have been developed 
to discuss the crystallography of this type of transfor- 
mation in iron alloys. As an example of the present 
analysis, we will hereafter focus on this cubic to 
tetragonal transformation. 

Assuming the Bain correspondence or its equivalent 
between the parent (~) and product (fl) crystal lattices, 
one of the three crystallographically equivalent lattice 
deformations corresponding to Equation 1 is expressed 
a s  

B~ = 

(!00) 
81 0 (6 )  

0 ~2 

where ~1 and e2, the principal lattice distortions, can be 
calculated from the lattice parameter values of the c~ 
and fl phases and the ~ coordinate system is chosen as 
xT 1] [1 0 0]=, x~ ]] [0 1 01= and xj N [0 0 1]=. By following 
the original phenomenological theories [1, 2], the 
(0 1 1)= [0 i 1L shear system will be chosen as the LIS 
system. This shear can occur either by slip or by 
twinning. These two cases will be considered separately. 

3 . 1 .  S l i p  a s  LIS 
With an orthonormal xSi (l[[011L) - x~(r][0i i]~) - 
x~(ll[100]D coordinate system (the s system), the 
(011)~[0 T 1]~ slip deformation in the ID theory can be 
expressed as a simple shear of the form 

P~ = 0 (7) 

0 
s 
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where m is the unknown amount of the shear distor- 
tion. When P is viewed on the ~ coordinate system, the 
following equation can be obtained as a result of the 
transformation of the coordinate system 

0 0 0 t 
P~ = 0 --m/2 --m/2 

0 m/2 m/2 ] 

(8) 

Therefore, the matrix F in the previous section becomes 

el 0 0 )~ 

0 ei - m/2 -m/2 

0 m/2 82 + m/2 

(9) 

F ~ = B ~ + P~ = 

Using the direction cosines defined in Table AI in 
Appendix 2, the components of F" viewed on the n 
coordinate system become from Equation A5 

3 3 
F~ = ~ ,  Z akiatjF2} (10) 

k=l 1=1 

Therefore, the explicit forms of Equation 2 can be 
obtained from Equations 9 and 10 and by taking the 
symmetric strain components of F~, i.e., F~! (S) as 

f~, (S) = 81 cos 2 0 cos 2 

+ (~1 - -  m/2) cos 2 0 sin 2 q5 

+ (e2 + m/2)sin20 = 0 (11) 

F~2(S) = elsin 24) + (~1 - m/2) cos 24) = 0 

F~2(S) = - m c o s 0 s i n ~ b c o s q S / 2  = 0 

As mentioned in the previous section, Equations 11 
constitute three simultaneous equations with three 
unknown parameters O, (o and m. The orientation of 
the habit plane and the amount of LIS can thus be 
obtained. Solving Equations 11, we find that there are 
four sets of solutions, in agreement with the results of 
the phenomemological theory. However, because of the 
crystal symmetry, only two solutions (say, solutions I-1 
and I-2) are crystallographically independent. They 
are listed in Table I. It can be seen that solutions I-1 
and I-2 give the same combination of the habit plane 
indices. However, the amounts of LIS are different. 

One may think that since the predicted habit plane 
orientations in Table I are of the form {h k 0}~, there 
exists a degeneracy of two different variants, {h k l }~ 
and {h k [}~, in the FD based analysis. However, this is 
not the case. The obtained four solutions (two indepen- 
dent ones are shown in Table I) in the ID analysis are 
actually of the forms (h k 0)~, (h 0 k)~, (ilk 0)~ and (/70 k)~ 
and they exactly correspond to the four FD solutions, 
(h k l)~, (hlk)~, (/Tk l)= and (/Tlk)~, respectively. 

To obtain the orientation relationship, let us con- 
sider solution I-1 as an example. Since m = -282, 
Equation 9 becomes 0) 

F" = 81 "q- 82 82 

- 82 0 

(12) 

Substituting Equations 3 and 12 into Equation 4, we 
have 

T ~ = co 3 e~ + 82 82 - co~ 

--( '02 - -82  + (J)l 0 

03) 

T A B L E  I Analytical solutions for various crystallographic parameters resulted from the application of the present ID approach to 
the cubic to tetragonal t ransformation with the (0 0 1)~[0 T 1]~ slip system as the LIS system 

Solution I- 1 I-2 

Habit  plane ((- 81/82) 1/2' [@I -- 82)/82] I/2' 0)~ 

Amount  of LIS, m - 282 

Total shape 
deformation 

0 

T" 0 -281[ - (81  + 82)/8t1 t/2 

0 28 t + 82 / 
r  

Direction [ -  (--  81/82) 1/2 , [-- 81 Jr- 82)/82] 1/2, 0]m 
Magnitude lezl 

Orientation 
relationship 

0 

R c~ - - 8 1 [ - - ( 8 1  -}- 82)/81] 1/2 

0 

Tilt angles [1 00]~ [-81(81 + 82)] 1/2 
[ 0 1 %  [ - s l ( s l  + 82) + 8~] t/2 

[oo 1L 18=1 

81[--(81 -~ 8 2 ) / 8 t l  1/2 

0 

82 

0) 
-- 82 

0 

((--81/82) 1/2, 0, [ (g I Jr- 82)/82]1/2)= 

28 l 

! 0 2<1.-(< 0 80/<]'/~ / 
0 
0 28~ + s 2 ] 

/ - -n  

[--(--81/82) i/2, O, [(81 q- 82)/82]U2]= 
182l 

t 0 0 
-< [ - (<  + 80/<11/2 

[-<(81 + 82)11/2 
1811 
(-8L82) 1/2 

\ 
0 81[--(g I ~- 82)/81]1/2\ 

) 0 81 

-8~ 0 
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From the solution of the habit plane orientation for 
soiution I-l, two non-parallel vectors on the habit 
plane can be chosen as 

v ~(I) = [0,0, 1]= 

v~(II) = [-[(/31 + e2)//32] I/2, (-/3,//32) 1/2, 0]= 

(14) 

From Equations 13, 14 and 5, the components of R ~ 
can be obtained in terms of/31 and/32 as 

R ~ = 

0 /31[- (/3, +/32)//3d 1/2 

--/31 [ - -  (/31 -}- /32)//3I ]1/2 0 

0 /32 

-- 432 

0 

05) 

This rotation matrix describes the orientation rela- 
tionship between the c~ and fl phases and is listed in 
Table I. It is found from Appendix 1 that the/? phase 
is rotated with respect to the ~ phase by an angle 
('03 = - -  /31[--  (/31 qL. /32)//3I]1/2 about the x~ ([0 0 1]=) axis 
and by co I = e2 about the xT ([1 00]=) axis. In Table I, 
the magnitudes of the tilt angles of the principal axes 
of the c~ phase as a result of the above rotation are also 
indicated. 

Substituting Equation 15 into Equation 13, the 
complete information of the total shape deformation 
T is obtained. When T is viewed on the n coordinate 
system, from Equation A5 and from the already 
known direction cosines a o listed in Table A1, we have 

(i ~ ~ t 
T" = 0 -2e~[-(/3~ 4- /32)//3~] 1/2 (16) 

0 2/31 4- /32 

as shown in Table I. Therefore, the total shape defor- 
mation consists of the shear component T~3 = 
--  2/31 [-- (/3~ + ~2)//3111/2 on the habit plane along the x~ 
([-[(/3l + /32)//32] I/2, ( - e l  Is2) 1/2, 0L) direction and the 
dilational component T~3 = 2el + /32 normal to the 

habit plane. The magnitude of the total shape defor- 
mation is found to be 1/32[ from [(T~3) 2 4- (T~3)2] 1/2 and 
its direction can be obtained on the ~ system by the 
transformation of the coordinate system as shown in 
Table I. Exactly the same procedure can be repeated 
to obtain a set of solutions I-2. 

3 . 2 .  T w i n n i n g  a s  LIS  
Here, we consider the (0 1 1)=[0 i 1]~ twinning shear as 
the LIS system. As shown in Fig. 1, this twinning can 
be incorporated in the theory by considering two dif- 
ferent (though crystallographically equivalent) lattice 
deformations, i.e., 

B~ 

E1 

= 0 

0 

0:) (!~176 /31 B~ = /32 0 (17) 

0 ~2 = 0 el 

As shown in Fig. lc, in order for the/?-phase to be 
internally twinned, the/?-phase crystal subjected to the 
lattice deformation B1 (say, crystal 1) must be rotated 
relative to the/?-phase crystal subjected to the lattice 
deformation B 2 (crystal 2) by the angle @ shown in the 
figure. From simple geometry, the rotation matrix 
of crystal 1 can be found and it is expressed within the 
framework of the ID theory as 

(i ~ ~ t O~ = 0 - e 2  + /3j (18)  

/32 - -  /31 0 

When the volume fraction of crystal 1 in the twinned 
/?-phase is denoted as f ,  the total shape deformation T 
can now be written as 

T = R + f ( *  + B~) + ( 1 -  f )B2 (19) 

where R is a rotation matrix to be determined. Similar 
to the previous case, we define F as 

F = f ( O  + B1) + (1 - f ) 8 2  (20) 

From Equations 17 and 18, F is expressed on the 

/ 
X 3 

cubic 
phase 

0 ~ 1  ~ 

(a) 

/ 

X 3 

/ 

-4- 

. ,2  

/ 
x a 

> 
x 2 

/ 
k~ 
-4- 

\ \  B1 ] 

+ c .  

B2 " ' ~  
) 

1 + 6 2 ~ X 2  

(b) 

X2 " ' , . . . ' k ~ , . ~ \  B1 ] 

(c) 

Figure 1 Schematic illustration 
showing how the (0 1 1)~[0T lit 
(derived from (0 1 1)c[0 T 11~ ) twin- 
ning deformation in the product t 
phase can be incorporated in the 
present analysis as a result of the 
combination of two t crystals sub- 
jected to different lattice deform- 
ations B~ and B 2. Note that the 
rotation of crystal 1 (with B~) by 
an angle @ makes this crystal twin 
related to crystal 2 (with B_,). 
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coordinate system; 

F~ 

0 0 ) 
= 82 - f(e2 - st) - f ( e ~  - 81) 

f(82 - el) 81 + f ( 8 2  - ~1) 

(21) 

This matrix with the unknown parameter f for the 
twinned fi-phase corresponds to the matrix (Equation 9) 
with the unknown parameter m for the slipped fi- 
phase. 

We can repeat almost the same procedure as in 
Section 3.1 to derive f and the habit plane orientation 
and the results are shown in Table II for the obtained 
two independent solutions (solutions II-1 and II-2). It 
is encouraging to find from Tables I and II that the 
resultant habit plane orientations are exactly the same 
as those for the slipped 3-phase (solutions I-1 and I-2), 
in agreement with the results in the phenomenological 
theories [1, 2]. 

The orientation relationships between the e and 3 
phases can also be derived in a similar manner as in 
Section 3.1. For  the case of solution II-1, for example, 
R in Equation 19 becomes 

R~ = 

0 ~[-(~1 + 8~)/81] 1/~ 0 ) 
- ~ 1 [ - %  + ~)/~1] 1/~ 0 - s l  

0 ~1 0 

(22) 

For  the cubic to tetragonal transformation, neither B 1 
nor B 2 rotates the crystal. Therefore, the above R ~ 
describes the rotation of crystal 2. On the other hand, 
in addition to R ~, the rotation �9 ~ in Equation 18 
must also be taken into account for the rotation of 
crystal 1 

R ~ + 0 ~ - 

0 ~1[--(~1 + 82)/81] I/2 ~ ) 

--8 I [ - (81  + g2)/81] 1/2 0 82 

0 e 2 

(23) 

This rotation of crystal 1 is again found to be exactly 
the same as that for solution I-1 in the previous sec- 
tion. The above orientation relationships are shown in 

TAB L E I I  Analytical solutions for various crystallographic parameters resulted from the application of the present ID approach to 
the cubic to tetragonal transformation with the (0 1 1)~[0 il] 2 twinning system as the LIS system 

Solution II- 1 II-2 

Habit plane 

Volume fraction of 
crystal 1, f 

Total shape 
deformation 

T n 

Direction 
Magnitude 

Orientation 
relationship 

Crys ta l  1 

R ~ + 0 ~ 

Tilt angles [1 00]~ 
[0 101~ 
[oo IL 

Crys ta l  2 

e ~ 

Tilt angles [100 L 
[0l  0L 
[oo 1L 

((--81/~2) I/2, [(81 4- 82)/82] l~ , 0)~ 

o ) 
0 --2en[--(8 t 4- g2)/81] 1/2 

n 
[ - - ( - - 8 1 / ~ 2 )  1/2, [(81 Jr- g2)/82] 1/2, 01~ 

1~21 

0 

- - ~ t [ - - @ l  + 82)/81] 1/2 

0 

l -8 , (8 ,  + 8~)] '/~ 
[-81(~1 + 8=) + 8~] i/z 

0 

-~1 [ - (81  + 82)/e~1 t/2 

0 

[-81(8t + 82)] 1/2 
( -  el 82) t/2 

81[-(81 + 82)/8t] t:2 

0 

82 

81[-8j  + 82)/8~] ~:2 

0 

o) 
- -  8 2 

0 

o) 
- -81 

0 
~t 

((-81/82) 1/2, O, [% + 82)/e211/2 L 

8~/(8~ - 81) 

\ 
0 0 2el [ - (Sl  + 82)/81F2'1 

) 0 0 0 

0 0 2e I + 82 ~ / 

[-(-81/82) 1/2, O, [(81 + e2)/8211/2]~< 
1821 

0 

0 

- -81[- - (81 'Jr" g2)/81] 1/2 

[_81(81 .4_ 82)]1/2 

( -  8~ 8=)"2 

t 0 0 

-81[-(8L + 82)/8~] ~/2 

[-s~(8~ + 8=)] ~/2 
18=1 
[-81(81 + 82) + s~]l/= 

\ 
o ~ t [ - (s ,  + ~2)/s~]~/2\ 

) 0 s] 

-81 0 

\ 
0 ~ [ - %  + s2)/el]'"2~ 

) 0 e2 

--s~ 0 
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Table II together with the tilt angles of the principal 
axes. 

4. Application of the analysis 
The present authors and their colleagues have analysed 
the crystallography associated with the cubic (c) to 
tetragonal (t) transformation in zirconia alloys using 
the Wechsler-Lieberman-Read phenomenological 
crystallographic theory based on the FD analysis [8]. 
The results obtained in their study are very suitable for 
comparison with the results of the present ID analysis. 
Since the internally twinned t phase on the (01 1)t 
twinning plane derived from the (01 1)~ plane was 
considered in the previous study [8], the direct com- 
parison with the present analysis, Section 3.2, is 
possible. 

As an example, let us use Data I shown in Table I 
of the previous study [8]. The lattice parameter of the 
c phase is ac = 0.5127nm and the lattice parameters 
of the t phase are at = bt = 0.5093nm and ct = 
0.5177nm. These give 

C, 1 = ( a t / a c ) -  1 = -0 .006632 

and 

52 = (ct/ac) - I = 0.009752 (24) 

Simply substituting these 51 and e2 values into the 
expressions for solutions in Table II, we obtain numeri- 
cal values for various crystallographic parameters. 
Using solution II-1 as an example, the results are 
shown in Table III under the column "ID".  The sol- 
utions from the previous more involved FD analysis, 
some of which were obtained by a computer, are 
also listed under the column "FD" .  The comparison 
between the two corresponding results readily indi- 
cates that the differences are very small. Such differ- 
ences are immaterial when the calculated results are 
compared with experimentally observed ones. To help 
readers find the present results visually, Fig. 2 is also 
provided. This figure should be compared with Fig. 1 
of reference [8] to see the excellent agreement. 

5. Discussion 
As we have seen, the present ID theory results in very 
simple analytical solutions for the crystallography and 
morphology of a transformation product phase. This 
is a great advantage of the ID analysis since the 
dependence of the solutions on input data can be 
found analytically without conducting computer cal- 
culations. Moreover, since the ID theory assumes that 
absolute magnitude of each distortion component is 
much smaller than unity, the successive occurrence of 
deformations can be expressed just by the superpos- 
ition or addition of distortion matrices with no need to 
pay attention to the order of occurrence of the defor- 
mations. This is another advantage of the ID analysis. 
In the FD analysis, on the other hand, the combination 
of deformations is expressed by the multiplication of 
deformation matrices. Since the multiplication of 
matrices is in general not commutable, the combi- 
nation of deformations is affected by the order of the 
occurrence of the deformations. 

It is of course true that the ID analysis is the 
approximation of the more rigorous FD analysis. 
Then, how large are the differences in the results from 
the two analyses? Let use define A (A > 0) as the 
order of magnitude of the lattice distortion com- 
ponents (such as e~ and e2) in the ID theory. The 
superposition of deformations is possible in the ID 
theory since this theory neglects the second- and higher- 
order terms of A. Therefore, the relative differences in 
solutions between the ID and FD analyses should be 
in the order of A. Referring to the analytical results in 
Tables I and II, we find that the components of the 
habit plane indices (such as ( -  51/52) I/2 and [(81 + 52)/ 
e2] ~/2 are described by the zeroth order of k. Therefore, 
the absolute differences are in the order of A. In other 
words, the habit plane orientation calculated from 
the ID theory may differ from the corresponding result 
of the FD theory by about A radian or 180k/~z degrees. 
For the case of the c --+ t transformation in zirconia 
alloys, k is in the order of l 0  -2. Therefore, the differ- 
ence should be less than 1 ~ which compares favourably 

T A B L E  II I Comparison of the numerical solutions between the present (ID) approach and the usual (FD) approach based on the 
phenomenological crystallographic theory. As an example, the cubic (c) to tetragonal (t) transformation in a zirconia alloy was used with 
e~ = -0 .006  632 and e, 2 = 0.009 752. Refer to reference [8] for the FD analysis 

ID FD 

Habit plane (0.8247, 0.5656, 0)c (0.8267, 0.5625, -0.0118) c 

f 0.4048 0.4068 

Total shape deformation 
direction [-0.8247,  0.5656, 0]c 
magnitude 0.009 752 

[-0.8293,  0.5587, - 0 . 0 l  I% 
0.009 688 

Orientation relationship 
Crystal 1 (tl) 
[1 0 0leA[100]t t 0.261 ~ 0.258 ~ 
[0 1 0leA[0 1 0],~ 0.617 ~ 0.613 ~ 
[0 0 1leA[0 0 1]~ 0.559 ~ 0.556~ 
Crystal 2 (t2) 
[1 0 0leA[0 1 0]t 2 0.261 ~ 0.258 ~ 
[0 1 0leA[0 0 ]]t2 0'461~ 0460~ 
[0 0 l]c A[1 0 0]t2 0.380~ 0.381~ 
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O. 559 ~ 0.380 ~ 

001 

Pus 

Figure 2 (1 00)r stereographic projection 
showing the calculated habit  plane normal 
(PH), the direction of the total shape 
deformation (d) and the orientation 
relationships between the c phase and the 
two twin-related t phase(t  L and t2) of a 
zirconia alloy with e~ = - 0 . 0 0 6  632 and 
~2 = 0.009752. PLJs indicates the twin 
plane normal. 

O. 461 ~ 

0T0 
1 O0 c 

0.261 ~ 

010 c 

0.617 ~ 

ooT r 

[ ] [ l O O l t l  and [ 0 1 0 l t l  

[ ]  [0011t l  (ct -axis)  

�9 [100]t2 and [010]t2  
I ~  [001]t2 (ct -axis)  

with the results in Table II showing the difference of  
0.7 ~ . 

Similarly, we find that the absolute difference i n f i s  
also in the order of A s incef is  expressed in the zeroth 
order of A. However m, the amount  of slip, and the 
rotation angles to describe orientation relationships 
are expressed in the first order of A, as shown in Tables 
I and II. Therefore, the absolute differences in the 
numerical values for these parameters are expected to 
be in the order of N. The results in Table III correctly 
indicate that this is the case. 

As shown above, the small A( ~ 10 2) for the c --+ t 
transformation in zirconia alloys naturally resulted in 
the close agreement in solutions between the ID and 
FD analyses. For  the case of the f c c  to b c c  (bc t )  
transformation in steels, on the other hand, A is in the 
order of 10 -1. In such a case, the above discussion 
indicates that the ID-based solution for habit plane 
orientation may differ as much as 10 -1 radian or 
about 10 ~ from the corresponding exact FD-based 
solution. Therefore, the ID solutions may lose their 
applicability when they are compared with experi- 
mental observation. 

Nevertheless, compared with 4~ steradian of the 
three-dimensional space, the difference of A radian is 
still small. Moreover, the ID-based analysis certainly 
gives a handy tool to understand the origin and the 
meaning of  calculated solutions in the FD-based 
phenomenological theory. For  example, it is known 
from Table I that the magnitude of the total shape 
deformation is 1~2J. This means that it should not be 
very sensitively dependent on the value ofe~ even when 
the FD-based analysis is conducted. Such an example 
can be found in many other crystallographic par- 
ameters, as listed in Tables I and II. 

The cubic to tetragonal transformation analysed 
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in the present study is one of the simplest transfor- 
mations to be treated mathematically because of its 
high crystal symmetry. When a transformation involves 
phases with lower crystal symmetry, such as the 
tetragonal to monoclinic transformation in zirconia 
alloys, the actual calculation to obtain analytical sol- 
utions may become rather complicated. In such a case, 
it is often more convenient to use the condition 
IF~(s)] -- 0, as discussed in Appendix 3. From this 
condition, the amount  of slip, rn, or the volume frac- 
tion of one of the two twin-related crystals, f,  can be 
obtained directly, Then, using two of the three simul- 
taneous Equations 2, 0 and 4) can be obtained easily. 
The application of the present theory to such cases is 
currently under progress. 
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Appendix a 
Consider a right-handed x , - x2 -x3  orthonormal coor- 
dinate system fixed to the physical space. When a 
point in a body whose position vector is originally 
x = [xl, x2, %] is displaced by u = [ul, u2, u3] by a 
deformation, the displacement u + du = [ul + du~, 
u2 + du2, u3 + du3] of an adjacent point x + dx = 
Ix1 + dxl,  x2 + dx2, x3 + dx3] is written as 

du i = ~ ~bli k=l ~ dxk (AI) 

or in a matrix form 

du = D �9 dx 



TABLE AI The direction cosines a~j relating the ~ system 
(fixed to the principal axes of the parent e phase) to the n system 
(with the xg axis being perpendicular to the habit plane) 

or conversely, 

3 3 

A} = Z Z a,kaj, A~, (A6 )  
k-1 l=1 

x7 ~ 

xl I[[1 00]= cos 0 cos 0 -sin q5 sin 0 cos 0 
(all) (ai2) (a13) 

x2 [l[0 1 01~ COS 0 sin ~b cos O sin 0 sin O 

(a21) (a22) (a23) 
x 3 J][O0 1]~ - -s in  0 0 cos 0 

(a31) (a32) (a33) 

i.e. 

dUl IDn D,2 D,3 Idx,] 
du2 = l D 2 ,  D22D23 l a x 2 [  (A2) 

dig3 \ D 3 1  032 033 L dx3_] 

where D~j = ~u~/~xj are the components of  the distor- 
tion tensor in the ID analysis. I f  du = 0 regardless of  
the choice of  dx, then the part  of  the body around x 
exhibits no deformation, i.e., all the components  of  D 
are zero. 

The distortion tensor D can always be decomposed 
into symmetric [D(S)] and antisymmetric [D (A)] parts 

D = O(S) + D(A) (A3) 

In the present ID analysis, D~(S) = Dj~(S) = (Ouf/ 
Oxj + #uj/Ox~)/2 are called the symmetric strain com- 
ponents and D~(A) = -Dj~(A) = (8u~/Oxj - #uj/ 
0x~)/2 are called the antisymmetric rotation corn- 

3 ponents. By defining o3~ = - (1 /2)Z~_r  Zk=i /3~kD/~ 
where /3,).~ is the permutat ion tensor (e~:3 = e:sl = 
/3312 ~ 1, /3132 ~-" /332t = 8213 ~ - - 1  and other e,jk are 
zero), the general form of  D(A) is written as 

0 -- 0 3 092 

D(A) = o33 0 - -  o31 (A4) 

- -  ( ' 0 2  O31 0 

It can be easily seen that the positive values of  o3~, o32 
and o)3 express the angles of  rotation of the right- 
handed screw advancing along the positive Xl, x2 and 
x3 directions, respectively. In the ID analysis, the 
absolute values of  all the components  D U are treated as 
if they are infinitesimally small compared with unity. 

Appendix 2 
The ~ coordinate system fixed to the parent ~ phase 
and the n coordinate system whose x~ axis is perpen- 
dicular to the habit plane can be related to each other 
by the direction cosines a 0. defined in Table AI  with 
two angles 0 and 0. (The mutally perpendicular x~ and 
x~ axes can be chosen arbitrarily so that both of  them 
are perpendicular to the x~ axis.) Let an arbitrary 
distortion matrix A be A ~ on the c~ coordinate system 
and A" on the n coordinate system. Then, A s and A" 
are related to each other by the following well known 
transformation of tensor components  

3 3 
A~ = 2 ~ a~iaoA~z (A5) 

k 1 l=l 

Appendix 3 
When the components of  a 3 x 3 symmetric strain 
matrix F(S) satisfy Equation 2 on the n coordinate 
system, this matrix can be expressed as 

( 0c 1 F"(S)  = 0 b 

b a 

(a7)  

where a, b and c are not necessarily zero. It is clear 
from the above expression that the determinant of  
Fn(S), JF(S)[ ,  is zero. However, since a determinant 
is an invariant quantity, in order for Equation 2 to be 
satisfied, [F(S)I = 0 must always be satisfied regard- 
less of the choice of the coordinate system. Therefore, 
choosing the c~ coordinate system, m or f i n  the text can 
be calculated from ]F~(S)[ = 0. In other words, 
IF(S)[ = 0 constitutes one of the necessary conditions 
for the IPS deformation. Since [F(S)t = 0 is the 
natural result derived from Equation 2, this condition 
and the three simultaneous Equations 2 are not 
independent of  each other. 

To clarify further the implication of Equation A7, 
let us calculate the principal distortions of  F(S). 
Solving the secular Equation A7, i.e., 

- 2  0 c 2 
0 - ;~ b = 0 (AS) 

c b a -  

we obtain three principal strains as the solutions for 2 

a _4- [a 2 + 4(b 2 + c2)] ~/2 
2 = 0, 2 (A9) 

The case for b = c = 0 is not of  interest to us since 
only dilatational strain, a, occurs along one direction 
and a plane perpendicular to it is an invariant plane. 
Other than the above case, we note that 

2 2 < 0  

This, together with Equation A9, indicates that the 
necessary condition for the realization of  the IPS 
deformation in the ID theory is equivalent to the 
condition that one of  the three principal strains for the 
symmetric strain matrix F(S) is zero and the signs of  
the other two principal strains are different. In the 
present example of  the cubic to tetragonal transforma- 
tion, it can be seen from Equation 12 that the three 
principal strains are 0, el and e~ + e2. Therefore, in 
order for the IPS condition to be realized, e~ (/3i + e2) 
must be negative. In this way, it is very easy to 
examine whether a given lattice distortion matrix B 
can result in the IPS deformation. 

In the FD theory, it has been shown [1, 9] that the 
necessary condition for the invariant plane deformation 
is that one of  the three principal distortions must be 
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unity and the other two be, respectively, greater and 
less than unity. Therefore, the exact correspondence 
between the ID and FD theories can also be found in 
the condition for the invariant-plane deformation. 
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